
Modeling Modern Code Review Practices in Open Source
Software Development Organizations

Amiangshu Bosu
Department of Computer Science

University of Alabama
Tuscaloosa, AL, USA
asbosu@ua.edu

ABSTRACT
Many Open Source Software (OSS) communities has adopted peer
code review as an effective quality improvement practice. The in-
formal, regular, and tool-based code review process has been called
’modern code review’. There has not been much research on the
modern code review process. This dissertation aims to model the
this code review process adopted by the software organizations
through 1)understanding, 2) improving, and 3) providing sugges-
tions. I have planned seven steps to achieve the research goal,
which includes literature review, exploring OSS code review prac-
tices, mining OSS code review repositories, comparing code review
metrics across projects, surveying OSS code review participants,
analyzing the effectiveness of peer code reviews to prevent security
vulnerabilities, and social network analysis.

So far, I have completed first three steps and made significant
progress towards the next three steps. The research has contributed
an empirical evidence that code review helps building accurate peer
impressions between the code review participants. The planned fu-
ture contributions include providing effective strategies to perform
peer code review, evaluating the effectiveness of peer code review
to prevent security vulnerabilities, and influence of project charac-
teristics /social network structure on the peer code review process.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—productivity, pro-
gramming teams

General Terms
Measurement, Design, Human Factors, Verification

Keywords
peer code review, peer impression, open source,inspection

1. INTRODUCTION
Software inspections, in which developers subject their code to

review by peers or other stakeholders to identify defects, was devel-
oped by Michael Fagan in 1976 [12]. Since then, it has been estab-
lished as an effective quality improvement practice [32, 9]. Even

IDoESE ’13 Baltimore, Maryland USA
Copyright owned by author.

with the benefits offered by software inspections, their relatively
high cost and time requirements have reduced the prevalence with
which software teams, in general, adopt them [18]. Conversely,
many mature, successful Open Source Software (OSS) projects
have recently adopted peer code reviews (informal software inspec-
tion) as an important quality assurance mechanism. We define,
Peer Code Review as, the process of analyzing code written by
a teammate (i.e. a peer) to judge whether it is of sufficient quality
to be integrated into the main project codebase.

There are multiple ways to perform a code review, but they all
have a similar goal of evaluating certain properties of newly writ-
ten or revised code. Many of the OSS project coding guidelines
state that all the code changes must be approved through peer code
review before merging into the main project branch. Some of the
well-known OSS projects, that require mandatory code review in-
clude: Apache, Chromium browser, Chromium OS, Mozilla, QT,
and Android. Even many commercial organizations are also adopt-
ing the peer code review practice [2]. However, there are marked
differences between Fagan-style code inspection and peer code-
review practices adopted by the software organizations. First, peer
code-review are practiced asynchronously using mailing list or code-
review tools. Bacchelli and Bird called this practice as Modern
Code Review, and identified three key characteristics of this code
review process: 1) informal, 2) tool-based, and 3) occurs regularly
in practice [2].

Despite the recent widespread adoption of the peer code review
process in both OSS and commercial projects, there has not been
much research on modern code review. Therefore, the following
three topics warrant further research.

1. Understand

− the code review practices adopted in different types of
organizations

− the common types of flaws identified during code re-
view

− both technical and non-technical benefits/drawbacks of
code review

2. Improve

− the process by suggesting solutions to commonly iden-
tified code review problems

− the efficiency of code reviews by suggesting which types
of code need more attention

3. Suggest

− how different types of organizations can be benefited
by adopting code review practice

− the best strategies to review code changes

− how to select reviewer for code changes



In my dissertation, I plan to address research questions from each
of the three areas to model the modern code review process. The
remainder of the paper is organized as following. § 2 summarizes
a motivating study. § 3 summarizes prior research results. § 4 de-
scribes the high level research questions, potential study designs,
and studies already performed for my dissertation. Finally, § 5
mentions the areas where I would like to have feedback and con-
cludes the paper.

2. PRELIMINARY MOTIVATING STUDY
The broader research goal of the current research project in-

cludes modeling the peer impression formation between the mem-
bers of OSS communities. Peer impression is "the judgments that
a person, called the perceiver, makes about another person, called
the target". The formation of peer impressions primarily depends
upon how well the perceiver is acquainted with the target and upon
the personality traits of those two individuals [19].

Generally, OSS participants are geographically distributed, rarely
or never meet face-to-face (FTF), and collaborate using text-based
tools over the Internet, i.e. Computer-Mediated Communication
(CMC) [15, 17]. Due to the marked differences between FTF and
CMC interactions [4], the impression formation process between
OSS participants, who primarily collaborate using CMC, is dif-
ferent than the impression formation process between developers
working in FTF settings. CMC participants often have difficulties
forming accurate impression about the abilities of their peers. Yet,
OSS participants consider those impressions about their peers very
important during interaction[5]. Because peer impression is a ma-
jor motivator for OSS participants and has great influence on the
interaction between the OSS peers, it is important to understand
the peer impression formation process within the OSS communi-
ties. However, there is a lack of knowledge about that process [21].

To better understand peer impression formation and evolution
within distributed OSS teams, we surveyed a broad spectrum of
OSS participants to discover: 1) how different forms of peer im-
pressions develop in OSS communities, 2) the factors that affect the
impression formation process, 3) how peer impressions evolve, and
4) the opinions of OSS participants about those peer impressions.
In the study, we primarily focused on five forms of peer impres-
sions: 1) productivity, 2) competency, 3) easy or difficult to work
with, 4) expertise, and 5) trustworthiness. To gather data to inves-
tigate these issues, we designed an online survey that focused on
communication, collaboration, and peer evaluation in OSS commu-
nities. We sent the survey to the developer mailing lists of 48 pop-
ular, successful OSS projects (i.e., projects with more than 50,000
downloads) and received a total of 115 responses.

The full details of the survey is under review, but can be viewed
in a technical report [5]. First, we focused on the impressions of
the OSS participants about working with their peers. Most of the
participants (approximately 61%) indicated having positive experi-
ences with their peers on the FLOSS projects. The rest of the par-
ticipants indicated negative experiences due to poor management,
difficulty in collaboration, delayed communication, hard to get in-
volved, and time-zone difference. We also found that volunteers
were significantly more likely to report negative experiences about
working with peers than were the paid participants.

Second, we focused on understanding whether impressions of
peer developers had any effect on peer interactions. The respon-
dents indicated that their impression of a peer’s level of exper-
tise and trustworthiness were significant factors in their interactions
with that peer. Third, about half (55%) of the respondents believed
that their peers had an accurate impression of their ability, 31%
were not sure, but thought that peers had an accurate impression
of their ability and 13% thought that peers did not have an accu-
rate impression of their ability. Some of the reasons given for the

responses included the fact that because the development process
and communication is done in the open, people should be able to
form accurate impressions. Conversely, for those that were not sure
other’s had an accurate view, they stated that because there was not
much time spent together, as might occur on a co-located project,
peers may have incorrect impressions.

Fourth, we wanted to determine which factors OSS participants
consider most important to judge the productivity or competency
of their peers. There were three types of factors: Work Style (i.e.,
creativity, accuracy, response time and efficiency), Historical Fac-
tors (i.e., handle, background and online profile) and Project Con-
tribution (i.e., quality and quantity of committed code and com-
ments, critical fixes made, important design decisions made, writ-
ten communication and other work products). The respondents
overall rated the Project Contribution factors as being the most
important and the Historical Factors as being the least important.
Therefore, the results show that for judging the competency of a
peer, developers prefer to use information about that person’s actual
contributions to the project rather than other interpersonal factors.
Our detailed analysis of the results revealed that when a partici-
pant performs a significant task (e.g. developing a critical module)
with accuracy and other participants find that module easily under-
standable for integration or collaboration, those participants form a
positive impression of the original participant.

Finally, we asked respondents to rate the importance of various
factors in determining if someone was easy or difficult to work
with. Similar to the other results, we found the Coding-related fac-
tors (i.e. poor quality code, buggy features, codes violating design
integrity) were the most important factors for identifying difficult
to work with peers.

The results of this survey provide some important insights into
the current beliefs of OSS developers from a wide range of projects.
These results suggest that coding-related factors influence the peer
impression formation most in OSS projects. Therefore, we believe
those types of interactions where participants can have the oppor-
tunity to judge a peer’s code or creativity should be crucial in peer
impression formation. Since, code review facilitates direct interac-
tions to judge a peer’s code, it should therefore serve to best support
peer impression formation. This results are my primary motivations
to model the peer code review process in OSS communities.

3. RELATED WORK
After observing time loss and difficulties in scheduling formal

code inspection meetings, Votta raised the question whether for-
mal meetings are really needed for code inspections [31]. He sug-
gested that the reviewer and the author can correspond using verbal,
written, or electronic medium without actually meeting physically.
Later, OSS communities championed the informal code review pro-
cess using electronic communication (i.e. mailing list).

Rigby and German are the first among the researchers to exam-
ine the informal code review process in OSS communities [27]. Af-
ter exploring code review policies and process of 11 OSS projects,
they generalized the code review process practiced in those com-
munities. They observed two types of peer code reviews: 1) pre-
commit review (Review Then Commit- RTC), and 2) post-commit
review (Commit Then Review - CTR). To characterize the code
review practice in Apache project, they calculated a set of code-
review metrics(i.e. acceptance rate, reviewer characteristics, top
reviewer vs. top committer, review frequency, number of reviewers
per patch, and patch size). Comparing similar code review met-
rics from five OSS projects, Asundi and Jayant concluded that the
code review processes and characteristics vary across different OSS
projects due to the differences in age and culture [1]. In a subse-
quent study, Rigby et al. analyzed the two types of peer code re-
view practiced in the Apache. The found that the CTR is faster



than the RTC but is not significantly less efficient in bug detec-
tion. They conclude that the secret behind the efficient and effec-
tive peer review techniques of the Apache is the "early, frequent
reviews of small, independent, complete contributions conducted
asynchronously by a potentially large, but actually small, group
of self-selected experts" [28]. Later, Rigby and Storey studied the
code review decision mechanisms in five OSS projects using broad-
cast based review(i.e. sending patches to a mailing list for review).
They conclude that reviewers decide to review patches based on
their own interests and past collaborations, therefore code changes
failing to generate interests among the core developers tend to be
ignored. Core developers of those OSS projects are aware that too
many opinions on a patch leads to ionated and unproductive discus-
sions, therefore they try to avoid that to ensure efficient broadcast
based code review [29]. Finally, based on their study results from
OSS code review process, Rigby et al. suggested how software
companies can adapt the peer code review process effectively [26].
The works of Rigby et al. [27, 28, 29, 26] lays an important foun-
dation towards building a theory of OSS code review process.

The success of the OSS code review process has encouraged
many of the commercial projects to adopt peer code review prac-
tices, which is evident by some of the recent publications [30, 26,
2, 3]. Contrary to OSS projects, code review participants at Mi-
crosoft use both synchronous and asynchronous communication
mediums for code review and they found code review dialogs es-
sential for understand code changes and design rational later. They
expressed a need to retain code review communications for later
information needs [30]. After surveying code review participants
at Microsoft about the expectations, motivations, actual outcomes,
and challenges of modern code review, Bacchelli and Bird found
that the motivations of the developers for code review do not match
exactly with the top outcomes, as the top motivations were finding
defects, code improvement, alternative solutions, and knowledge
transfer but code improvements, understanding, and social com-
munication were among the top outcomes. Knowledge transfer
was mentioned but was much lower on the outcome list. The re-
spondents mentioned understanding the code changes as the major
challenge for doing a code review. Based on their analysis, they
suggest that although major motivations for code review is finding
defects, the major benefits of code review is beyond that [2]. To
reduce the time required for code review, Balachandran introduced
a tool named Review Bot which is able to automate the checks for
coding standard violations and common defect patterns. The tools
can also suggest potential reviewers based on a learning algorithm
that he developed[3].

Despite very limited research on peer code review in prior years,
there has been a number of publications [2, 3, 7, 25] on peer code
review within the last one year indicating growing interests among
the software engineering researchers about peer code review.

4. RESEARCH GOAL AND DESIGN
This dissertation aims to 1) better understand the OSS peer code

review process, and 2) based on those understandings identify best
practices, and 3) suggest improvements. To achieve those goals, I
have defined three high level research questions. I plan to explore
the answers for these questions in my dissertation.

• HRQ1: How do participants perform peer code review?

– RQ1.1: How efficient are the peer code review prac-
tices in different OSS projects?

– RQ1.2: What are the social network structures of dif-
ferent OSS developer communities based on peer code
review interactions?

Figure 1: Research Design

• HRQ2: How do OSS projects benefit from peer code re-
view?

– RQ2.1: How do OSS participants benefit from partici-
pating in peer code review?

– RQ2.2: How does peer code review influence impres-
sion formations between code review participants?

– RQ2.3: How effective is peer code review for prevent-
ing different types of security vulnerabilities?

• HRQ3: How do project/participant characteristics influ-
ence the peer code review process?

I have designed seven steps to explore those research questions.
I have already made significant progress on the first three steps. I
am currently working on the next three steps. Following subsec-
tions provide a summary of the seven steps. Figure 1 illustrates the
seven steps which are detailed in the following subsections. Table
1 summarizes the planned studies to provide a timeline.

4.1 Reviewing Literature
This step involves reviewing literature related to peer code re-

view. There has not been much prior research work on peer code
review. Section 3 summarizes the prior research. However, Code
inspections have some similarity with peer code review and has
been studied over a long period. Therefore, I am also looking into
prior research on code inspections to determine which results from
code inspection research may be also applicable to peer code re-
view. That will also help me to formulate detailed research ques-
tions.

4.2 Exploring OSS Code Review Practices
This step involves exploring the code review practices of differ-

ent OSS communities. I have made significant progress on this
task. Following paragraphs describes the process I followed in this
step.

First, I made a list of OSS communities those practice peer code
review. The initial list contained 44 OSS communities.

Second, I explored the code review policies of different OSS
communities in my list. OSS projects have varying policies regard-
ing code review. Many OSS communities list their code review
policies on project website(i.e. Mozilla policy 1, MediaWiki2).
For example, three Apache core members should approve a code
change before merging into the trunk [27]. Many of the projects re-
quire authors submitting every code change for peer review, while
1 https://wiki.mozilla.org/Firefox/Code_Review
2 https://www.mediawiki.org/wiki/Gerrit/Code_review



Table 1: Dissertation plan

Study Name Research
Method

Research
Question(s)

Planned
Publication(s) Status Timeline

1. Comparing Code Review
Practices (§4.4)

Data mining, case
study

HRQ1 2 Data collected, One
publication [6]

May 2014

2. Surveying Code Review Par-
ticipants (§4.5)

Data mining, On-
line survey

HRQ1, HRQ2 2 Survey conducted, One
publication [7]

December 2013

3. Analyzing the Effectiveness of
Peer Code Review to Prevent Se-
curity Vulnerabilities (§4.6)

Data mining, case
study

HRQ2 1 Study conducted, In
submission

September
2013

4. Social Network Analysis of
Code Review Interactions (§4.7)

Data mining, case
study

HRQ1, HRQ3 1 Data collection planned September
2014

others require only critical or new member’s code changes to be
reviewed.

Third, I explored how different projects perform code reviews.
Previously, most of the OSS projects practiced mailing list based
code reviews. Linux kernel3 still uses mailing list based reviews.
Mozilla has integrated code review into bug management system
(BugZilla). However, recent trends are more towards using spe-
cialized web-based tools to manage code review requests.

Finally, I listed the code review tools used by different OSS
projects. Most of the OSS code review repositories are publicly
accessible. After exploring the code review repositories, I listed
the repository type,access URL, and the level of code review activ-
ities for each of the OSS projects from the initial list. I prepared
the second list of projects, after excluding 18 projects from the ini-
tial list as those 18 projects had a small number of (less than 1000)
code review requests posted in the repository.

4.3 Mining Code Review Repositories
This step involves mining publicly accessible data from the OSS

code review repositories. Most of the popular OSS projects have
started using tools to manage code review requests. Three code
review tools are popular among the OSS communities. Table 2
presents a brief summary of those three tools. To better analyze the
code review practices, I have written three Java applications (i.e.
Gerrit-Miner, RietVeld-Miner, and ReviewBoard-Miner) to mine
the code review repositories managed by the three tools. Those
applications are able to mine all the publicly accessible data for
each of the review requests posted in the code review repositories
managed by the three tools and populate MySQL databases.

Among the three code review tools, only RietVeld provides pub-
licly accessible API, which returns data in JSON (JavaScript Ob-
ject Notation) format. The RietVeld-Miner application parses the
JSON data returned by the RietVeld API to get details informa-
tion about a code review request. Gerrit does not provide a doc-
umented API. However, after analyzing the Gerrit managed web
pages, I reverse-engineered some JSON-RPC (JSON Remote Pro-
cedure Call) calls between web browsers and Gerrit web-servers.
The Gerrit-Miner application simulates similar JSON-RPC calls
to mine Gerrit repositories. The ReviewBoard-Miner application
downloads HTML pages for each review requests and parses the
code review request data using XPATH analysis.

Using the three miner applications, I have mined code review
repositories hosted by 26 OSS communities. Table 3 lists the projects,
types of the repository management systems, number of review re-
quests mined, and total number of code review participants in those
projects. Please note that, these numbers are according to data
mined from the repositories during the last week of May 2013.

4.4 Comparing Code Review Practices
3 https://www.kernel.org/doc/Documentation/SubmittingPatches

In this step, I defined a number of metrics to measure the ef-
ficiency of code review process. Table 4 describes those metrics.
We conducted a small scale study [6] using the data mined from
Asterisk, and MusicBrainz server code-review repositories. The
purpose of the study was to determine the applicability of our code
review metrics to compare OSS code review practices. Fist, we
found that code authors were not submitting all code changes for
peer review. More than 80% of the review requests were responded
by two or less reviewers. The top committers in the projects were
also the top code review contributors. Most of the review requests
received prompt feedback within a day; however, some requests
waited much longer for feedback. These two projects had very
high code approval ratio. Code authors modified the code changes
according to the code review feedback and received approval for
merging in the trunk.

Table 3: Code Review Repositories Mined

Project Code Review
Management
Tool

Total No. of
Code Review
Requests

Total No.
of Code
Review
Partici-
pants

Android Gerrit 18,110 1,642
Android ARM Gerrit 1,393 30
Asterisk ReviewBoard 1689 155
Chromium
Browser

RietVeld 270,410 4,571

Chromium OS Gerrit 47,392 1050
Coreboot Gerrit 2,955 94
Couchbase Gerrit 24,640 147
Cyanogenmod Gerrit 31,226 1,655
Eclipse Gerrit 11,363 454
Gerrit Gerrit 4,207 271
Gromacs Gerrit 1,578 44
KDE ReviewBoard 17,712 768
Kitware Gerrit 10,549 548
LibreOffice Gerrit 3198 207
Linaro Gerrit 3,151 75
MediaWiki Gerrit 59,738 412
Membase Gerrit 24,640 147
MusicBrainz ReviewBoard 2177 34
OmapZoom Gerrit 31,458 1,032
OpenAFS Gerrit 9,369 87
OpenStack Gerrit 26,766 1,154
OVirt Gerrit 13,647 224
QT project Gerrit 53,303 956
ReviewBoard ReviewBoard 1611 337
Scilab Gerrit 11,127 50
Typo3 Gerrit 18,673 511



Table 2: Popular Open Source Code Review Tools
Tool Name Project Homepage License Latest Version Written in

Gerrit https://code.google.com/p/gerrit/ Apache License v2 2.6.1 Java, Servlet, GWT
ReviewBoard http://www.reviewboard.org/ MIT License 1.7.11 Python, Django

RietVeld https://code.google.com/p/rietveld/ Apache License v2 - Python, Django

Table 4: Code Review Efficiency Metrics
Metrics Definition
Reviewers per
request

How many code reviewers respond to a code
review request?

Comments per
request

How many comments are posted on each
code review request?

First feedback
interval

Time elapsed between posting a code review
request and its first review feedback

Review interval Time elapsed between posting a code review
request and its approval

Approval ratio Percentage of code changes approved for in-
clusion in the trunk

The observed differences between the code review metrics be-
tween the two projects works as motivation to conduct a large scale
study to compare the code review practices of different OSS com-
munities. The code review data mined from 26 OSS communities
(Table 3) will help conduct this proposed study. The primary goal
of this study is to determine the correlations between the code-
review metrics and different project characteristics (e.g. project
size, project age, number of contributors, technology, and sponsor-
ship).

In the preliminary study, we also noticed some code review re-
quests were getting prompted feedback, while other review requests
had to wait for a longer period of time. I hypothesize that the repu-
tations (i.e. core contributors) and prior interactions (i.e. reviewed
prior code changes) between the author and the reviewer impacts
the prompt/delayed feedback. Studying this hypothesis is the sec-
ondary goal of the proposed study. This study will help me to an-
swer the first high level research question (RQ1.1). For the study, I
will select the projects to ensure diversity between project ages, do-
mains, languages, and sizes to combat the possible external threats
to validity,

4.5 Surveying Code Review Participants
For the first two high level research questions (HRQ1, and HRQ2),

opinions of the code review participants can provide crucial in-
sights. From the mined code review data (Table 3), I prepared a
list of OSS participants who are actively participating peer code re-
view. We designed a web-based survey4 focusing on the first three
high level research questions. We sent out the survey to persons
from our list during February - March 2013. We received encour-
aging responses from 287 code review participants. Partial results
of that survey will appear in the proceedings of ESEM -2013 [7].
The objectives of the survey was to understand: 1) the OSS code
review process, 2) expectations of the code review process, and 3)
how code review impacts peer impression formation.

Since, the survey focused on the behavioral aspects of code re-
view participants, we followed well-regarded social and behavioral
research methods to design our survey [13, 10]. We used estab-
lished scales from Psychology, Information science, and Organiza-
tional Behavior to create the survey questions. We primarily fo-
cused on better understanding how code review helps four aspects

4 http://asbosu.students.cs.ua.edu/data/code-review/code-
review-survey.pdf

of peer impression formation: trust, reliability, perception of ex-
pertise, and friendship. The results indicate that there is indeed a
high level of trust, reliability, perception of expertise, and friend-
ship between OSS peers who have participated in code review for
a period of time. The results of the survey provides an empirical
evidence to support the anecdotal evidence that code review helps
building accurate peer impressions between the code review par-
ticipants (RQ2.2). Because code review involves examining some-
one else’s code, unsurprisingly, peer code review helped most in
building a perception of expertise between code review partners.
Based on this result, we suggest that DSD teams suffering from a
lack cohesion can adopt code reviews, not only to improve soft-
ware quality, but also to improve the impressions formation among
teammates.

A number of commercial organizations are also practicing peer
code review [2] (e.g. Microsoft, Facebook, VMWare, and Google).
Many of the commercial software development companies world-
wide have adopted distributed software development (DSD), which
is largely similar to OSS development [16]. Therefore, we expect
many study results obtained from OSS projects might be applica-
ble to closed-source DSD projects. The results of the code review
survey encouraged us to replicate it in a closed source environment.
We have identified a organization that agreed to replicate our sur-
vey. We plan to send this survey to code review participants from
both co-located and distributed projects inside that organization.
This replication will help us to compare and contrast between the
code review practices in OSS, closed-source DSD, and co-located
projects.

There were several open-ended questions in the survey about
code review process and expectations from code review. We are an-
alyzing those open-ended responses using a systematic qualitative
data analysis process. Two REU (i.e. Research Experience for Un-
dergraduate, sponsored by National Science Foundation) students
examined the responses to extract the general themes associated
with each response. We discussed these themes to develop a coding
scheme for each question. Using these coding schemes, the REU
students are working independently to code the responses. After
they complete the individual coding, they will compare the results
to identify any discrepancies. The coders will then sit together to
resolve those discrepancies through discussion. For the unresolved
discrepancies, I plan to meet with the two coders and provide a
tie-breaking vote after listening to the rationale for each of the in-
consistent codes. The results of this analysis will help to gain more
insights into the first two high level research questions (HRQ1, and
HRQ2).

To remove potential threats to validity, we carefully designed
our survey. Multiple reviewers from different disciplines reviewed
the survey questions. We conducted three pilot studies to ensure
high quality survey questions. We enforced several reliability and
validity measures to ensure higher confidence in the survey results.
Finally, to eliminate potential coding bias, we are using two coders
to analyze the open-ended responses.

4.6 Analyzing the Effectiveness of Peer Code
Review to Prevent Security Vulnerabilities

Security vulnerabilities are specific source code flaws that al-
low attackers to expose, alter, disrupt, or destroy sensitive informa-
tion [11]. Even though there are numerous examples of exploited



security flaws that resulted in significant financial losses or other
serious problems, users still report numerous security vulnerabil-
ities to publicly available vulnerability databases (e.g. Common
Vulnerabilities and Exposures - CVE).

Peer code review has been suggested as an important practice for
detecting and correcting security bugs [22]. For example, expert
reviewers can identify code that contains potential security vulner-
abilities and help the author eliminate the security flaws or aban-
don the vulnerable code. Moreover, peer code review can identify
attempts to insert malicious code into the codebase. According to
McGraw, the longer it takes to detect and fix a security vulnerability
the higher the overall cost associated with that vulnerability [23].
Therefore, peer code review can reduce the cost of creating secure
software by helping developers eliminate security defects earlier
when it is less expensive.

During our analysis of the peer code review process in OSS com-
munities [6], we observed that code reviewers often provide de-
tailed comments and suggestions about potential bugs. Therefore,
we can find indications of security flaws by text-mining the code
review comments. For example, if a reviewer suspects the pres-
ence of a potential buffer overflow, his/her review comments will
most probably contain either buffer, overflow or both. The results
of our preliminary study [8] verified the feasibility of this approach.
Using text-mining, we have built and validated a list of keywords
(Table 5) to mine review comments relevant to different types of
security defects. Following steps describe the approach I followed
to build the set of empirically validated keywords. I used the R -
text mining (tm) package for the analysis.

1. Create a initial set of keywords relevant to security defects.

2. Mine the code review repositories and populate database.

3. Search the database using initial set of keywords and build
a CSV file (Corpus). Each entry in the csv file is a code re-
view comments containing at least one of the predetermined
keywords.

4. Because, many of the comments and texts contains code snip-
pet, apply identifier splitting rules on the corpus. (i.e. is-
BufferFull becomes "is Buffer Full" or read_string becomes
"read string").

5. Clean the corpus. Remove whitespace, punctuation, and num-
bers. Convert all words to lowercase. Create list of tokens for
each document (i.e. row in csv) in the Corpus.

6. Apply porter stemming algorithm to find the stem of each
of the tokens. (i.e. buffer, buffered, buffering all becomes
buffer).

7. Create a Document Term matrix from the corpus.

8. Determine the words those co-occurred frequently with each
of our predetermined keywords.

9. Manually inspect all the frequently co-occurring words, to
determine which keywords should be added to the predeter-
mined keywords list. The last row of Table 5 lists the key-
words, we added after the test-mining.

We queried the mined code-review databases (Table 3) to cre-
ate a list of code-review comments containing at least one of the
listed keywords. Then, two REU students inspected independently
to reject any comments clearly unrelated to security defects. We
discarded a review comment at this step only if both students con-
sidered it unrelated to security defects. Each of the remaining
review comments that passed the first inspection phase, indicates
a potential discussion about security vulnerabilities in the corre-
sponding code review request. Using the remaining review com-
ments, we have created a list of review requests with potential dis-

Table 5: Keywords Associated with Security Flaws
Vulnerability
Type

Keywords

Buffer overflow buffer, overflow, stack
Format string format, string, printf, scanf
Integer over-
flow

integer, overflow, signedness, widthness,
underflow

Cross site
scripting

cross site, CSS, XSS

SQL injection SQL, SQLI, injection
Command
injection

command, injection

Improper
access control

improper, unauthenticated, gain access,
permission

Denial of Ser-
vice/Race

denial service, DOS, race

Cross site re-
quest forgery

cross site, request forgery, CSRF, XSRF,
forged

Common security, vulnerability, vulnerable, hole,
exploit, attack, bypass, crash

Common
(added later)

threat, expose, breach, violate, fatal, black-
list, overrun

cussion about security vulnerabilities. We are now manually in-
specting each review request from that list. We are inspecting both
the code review discussions and associated patches to determine
whether any security vulnerabilities were prevented during the code
review process. We are collecting a set of metrics (e.g. author, re-
viewer, date, and vulnerability type, author experience, reviewer
experience, project) for the code review requests having evidences
of preventing potential security vulnerabilities. Analyzing those
metrics, we expect to answer following research questions.

1. How many vulnerabilities were prevented by the peer code-
review process?

2. Which type(s) of vulnerabilities were detected by the peer
code-review process?

3. What were the outcomes of the peer code-review suggestions
(e.g. abandoned or modified) for the code changes those had
vulnerabilities?

4. Which types of reviewers (in terms of background or exper-
tise) were most likely to detect vulnerabilities?

5. Which type of author (in terms of background or expertise)
was most likely to introduce vulnerabilities?

6. Are the vulnerable code changes significantly differ (in terms
of avg. size,and avg. complexity ) from other code changes?

7. Is peer code review effective to secure a software project?

The answers to those questions will help to answer the fourth
high level research question (RQ2.3). To address any potential re-
viewer bias, two students are working independently in each of the
phases. The students will discuss among themselves to resolve any
disagreements. I will work as the third reviewer to provide tie
breaking votes on disagreements they are unable to resolve. Be-
cause, the results of this study depends using correct set of key-
words, we also plan to validate the completeness of our keyword
set. We will manually examine a set of randomly selected review
requests those do not contain any of our keywords. Among this set,
the existence of no or very few review requests with evidence of
prevented potential security vulnerabilities using code review pro-
cess will validate our keyword set.



Table 6: Social Network Analysis Metrics
Metric Definition Usage
Degree Centrality Number of edges attached to a node Determining popularity of a node in a network
Betweenness
Centrality

Number of shortest paths that pass through a node divided by
all shortest paths in the network

Identifying the critical nodes for communica-
tion channels

Closeness
Centrality

Mean length of all shortest paths from a node to all other nodes Determining how quickly information flows
within a network

Average Distance The average of all shortest paths in a network Determining how far at any two nodes will be
on average

Density Ratio of the number of edges in the network over the total num-
ber of possible edges between all pairs of nodes

Determining how well connected a network is

Clustering A node’s clustering coefficient is the density of its neighbor-
hood

Determing which network topology the network
structure fits

Core-periphery
Fitness

Position of the high degree nodes Determing whether high degree nodes tend to
have stronger ties with other high degree nodes

Degree
Distribution

Probability distribution of the degrees between all the nodes of
a network

Understanding the network topology (e.g. ran-
dom graph, poisson distribution, power law)

4.7 Social Network Analysis
A social network is a theoretical construct that represents the re-

lationships between individuals, organization, or societies. These
networks are typically modeled using a graph structure consisting
of vertices and edges. Vertices typically represent individuals or
organizations. An edge connecting two vertices represents some
type of relationships between the two individuals or organizations.
Social network analysis focuses on studying social network graphs
to understand the patterns of interactions and the relative positions
of individuals in a social settings [14]. Social network analysis is
being widely used by researchers from a broad range of fields: so-
ciology, biology, antrhopology, communication studies, informa-
tion science, organizational studies, and psychology. Several re-
searchers have also used social network analysis of sociotechnical
interaction (i.e. mailing list, code repository, and bug repository)
graphs to model the social structure of OSS communities.

In OSS communities, community members communicate pri-
marily via various project mailing-lists. Most OSS projects have
multiple mailing lists that each serve a different purpose (e.g. user
support, bug report, announcements, and development). Among
those lists the developers use the development mailing-list to dis-
cuss project designs, development directions, and other pending
issues (both technical and non-technical). Because all develop-
ers subscribe to the development mailing list, all members of the
community are involved in the mailing list threads (i.e. reads the
message and can participant). As a result, it would not be accurate
to conclude that two participants interact with each other simply
because they are active in the same mailing-list thread. To accu-
rately measure the level of interaction between two participants,
we have to consider other types of sociotechnical interactions be-
tween those participants (e.g. interactions in the bug repository,
code review, or interactions in the code repository). Each type of
interaction provides a different view into the social structure of OSS
projects, therefore we anticipate that the social networks generated
from these interactions will differ.

During our analysis for the study to compare the code review
practices of OSS communities [6], we found evidences of strong
social network ties between the code review participants. Social
network graphs indicated a few central persons being responsible
for most of the interactions in the network. Again, we found that
in some cases certain participants were more likely to review code
written by other participants. Furthermore, in most cases review
requests between participants who were already acquainted had a
quicker turn around than requests between participants who were
not acquainted. These results suggested that a study of the social

network created by code review interactions could provide fruitful
insights into OSS projects.

I will use the data mined from code review repositories (Table
3) to build the social network graphs. In these graphs, individual
participants will be represented by the nodes. The weight of an
edge between two nodes in the graph will be calculated based upon
the number of code review requests between two participants. If
two participants have not interacted through code review, there will
not be an edge between the nodes representing those developers.
For each project, we will also build other types of social network
graphs that have been used in previous research, i.e. based upon
bug repository information and upon code repository information.
To build the bug repository social network I will to use a similar
approach as Long et al.[20] where nodes represent developers and
edge weights represent the number of mutual bug requests. I will
build the code repository network using a similar approach as Me-
neely et al.[24] where nodes represent developers and edge wights
represent the number of mutual code commit on same file/module.

For the social networks, I will calculate widely used social net-
work analysis (SNA) measures (Table 6) to compare the sociotech-
nical networks generated based upon code review information, code
repository information and bug repository information (RQ1.2). As
the interaction between participants varies based upon the type of
interaction measured, I expect to observe some interesting differ-
ences among the three graphs. For example, developers who work
on the same module have better ideas on the appropriateness of new
changes to those module and are more likely to review each other’s
code. Therefore, I expect that code review social network may be
similar to code repository social network. However, the bug inter-
action social networks may differ because there are patch submit-
ters who only fix bugs and do not have the privileges to make new
changes. Furthermore, each review request typically has at least
one of the most experienced developers of a module as a reviewer.
Therefore the experienced developers will likely be more prevalent
in the code review interactions. I expect that the code review so-
cial networks will be more centralized around a small number of
developers than the other two types of social networks. The results
of this analysis will help to understand the OSS community social
structure and the interactions between the OSS participants better.

Finally, I will use to correlate the SNA metrics with the code
review metrics (Table 4) to find out the impact of social network
structure on the efficiency of code review process (HRQ3).

5. AREAS OF CONCERN & CONCLUSION
This proposed dissertation work aims to model the modern peer



code review process. The planned contributions of this dissertation
work include providing empirical evidences regarding the techni-
cal/ non-technical benefits of peer code review, empirically validate
the effectiveness of peer code review to prevent security vulnera-
bilities, determine the best code review practices, and comparative
analysis of the OSS social network structures based on code re-
view interaction. This work will also help to understand the peer
impression formation process between OSS participants, which is
considered difficult as well as different from co-located projects.

There are several issues of which the author of this dissertation
would like to get the most advice on. First, for the four proposed
study designs, what are the other possible threats to validity and
how the author can modify the study designs to combat those?
Second, code inspections is similar to peer code review in some
respects and has been studied over the years. The author would
like to know if any prior research on code inspections can be useful
to build a model of peer code review. Finally, apart from the pro-
posed research questions, are there any other interesting research
questions that the author should consider for his dissertation.

6. ACKNOWLEDGMENTS
This research is partially supported by the NC State Science of

Security lablet, and the National Science Foundation under grant
numbers REU-1156563, and VOSS-1322276.

7. REFERENCES
[1] J. Asundi and R. Jayant. Patch review processes in open

source software development communities: A comparative
case study. In 40th Annual Hawaii Intl. Conf. on System
Sciences, 2007. HICSS 2007., pages 166c–166c. IEEE, 2007.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. of the 2013 Intl.
Conf. on Soft. Eng., pages 712–721. IEEE Press, 2013.

[3] V. Balachandran. Reducing human effort and improving
quality in peer code reviews using automatic static analysis
and reviewer recommendation. In Proc. of the 2013 Intl.
Conf. on Soft. Eng., pages 931–940. IEEE Press, 2013.

[4] J. A. Bargh and K. Y. A. McKenna. The internet and social
life. Annual Review of Psychology, 55(1):573–590, 2004.

[5] A. Bosu, J. Carver, L. Hochstein, and R. Guadagno. Peer
impressions in open source organizations: A survey.
Technical Report SERG-2011-3, Department of Computer
Science, University of Alabama, 2011.

[6] A. Bosu and J. C. Carver. Peer code review in open source
communities using reviewboard. In Proc. of the 4th ACM
Wksp. on Evaluation and Usability of Prog. Lang. and Tools,
pages 17–24, New York, NY, USA, 2012. ACM.

[7] A. Bosu and J. C. Carver. Impact of peer code review on peer
impression formation: A survey. In Proc. of the 7th
ACM/IEEE Intl. Symposium on Empirical Soft. Engineering
and Measurement, page To Appear. IEEE, 2013.

[8] A. Bosu and J. C. Carver. Peer code review to prevent
security vulnerabilities: An empirical evaluation. In Soft.
Security and Reliability (SERE), 2013 IEEE Seventh Intl.
Conf. on, page to Appear, 2013.

[9] J. Cohen, E. Brown, B. DuRette, and S. Teleki. Best Kept
Secrets of Peer Code Review. Smart Bear, 2006.

[10] R. F. DeVellis. Scale development: Theory and applications,
volume 26. Sage, 2011.

[11] M. Dowd, J. McDonald, and J. Schuh. The Art of Software
Security Assessment: Identifying and Preventing Software
Vulnerabilities. Addison-Wesley Professional, 2006.

[12] M. E. Fagan. Design and code inspections to reduce errors in
program development. IBM Sys. Journal, 15:182–211, 1976.

[13] A. Fink. The survey handbook, volume 1. Sage, 2003.
[14] L. Freeman. The development of social network analysis: A

study in the sociology of science, volume 1. Empirical Press
Vancouver, 2004.

[15] R. Guadagno and R. Cialdini. Online persuasion and
compliance: social influence on the internet and beyond. The
Social Net: Human Behavior in Cyberspace, pages 91–113,
2005.

[16] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In 2007 Future of Soft. Eng.,
pages 188–198. IEEE Computer Society, 2007.

[17] S. L. Jarvenpaa and D. E. Leidner. Communication and trust
in global virtual teams. Journal of Computer-Mediated
Communication, 3(4):791–815, 1998.

[18] P. M. Johnson. Reengineering inspection. Comm. of the
ACM, 41(2):49–52, 1998.

[19] D. A. Kenny. Interpersonal perception: a social relations
analysis. Guilford Press, 2004.

[20] Y. Long and K. Siau. Social network structures in open
source software development teams. Journal of Database
Management (JDM), 18(2):25–40, 2007.

[21] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: activity traces and
personal profiles in github. In Proc. of the 2013 Conf. on
Computer supported cooperative work, CSCW ’13, pages
117–128, New York, NY, USA, 2013. ACM.

[22] G. McGraw. Soft. security. IEEE Security Privacy, 2(2):80 –
83, Mar-Apr 2004.

[23] G. McGraw. Automated code review tools for security.
Computer, 41(12):108 –111, Dec. 2008.

[24] A. Meneely and L. Williams. Socio-technical developer
networks: should we trust our measurements? In 33rd Intl.
Conf. on Soft. Eng. (ICSE), 2011, pages 281 –290, may 2011.

[25] M. Mukadam, C. Bird, and P. C. Rigby. Gerrit software code
review data from android. In Proc. of the Tenth Intl.
Workshop on Mining Soft. Repositories, pages 45–48. IEEE
Press, 2013.

[26] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and
D. German. Contemporary peer review in action: Lessons
from open source development. IEEE Soft., 29(6):56–61,
2012.

[27] P. C. Rigby and D. M. German. A preliminary examination
of code review processes in open source projects. Technical
Report DCS-305-IR, University of Victoria, January 2006.

[28] P. C. Rigby, D. M. German, and M.-A. Storey. Open source
software peer review practices: a case study of the apache
server. In Proc. of the 30th Intl. Conf. on Soft. Eng., pages
541–550. ACM, 2008.

[29] P. C. Rigby and M.-A. Storey. Understanding broadcast
based peer review on open source software projects. In Proc.
of the 33rd Intl. Conf. on Soft. Eng., ICSE ’11, pages
541–550, New York, NY, USA, 2011. ACM.

[30] A. Sutherland and G. Venolia. Can peer code reviews be
exploited for later information needs? In Soft.
Eng.-Companion Volume, 2009. ICSE-Companion 2009.
31st Intl. Conf. on, pages 259–262. IEEE, 2009.

[31] L. G. Votta Jr. Does every inspection need a meeting? In
ACM SIGSOFT Soft. Eng. Notes, volume 18, pages 107–114.
ACM, 1993.

[32] K. E. Wiegers. Peer reviews in Software: A practical guide.
Addison-Wesley Boston, 2002.


	Introduction
	Preliminary Motivating Study
	Related work
	Research Goal and Design
	Reviewing Literature
	Exploring OSS Code Review Practices
	Mining Code Review Repositories
	Comparing Code Review Practices
	Surveying Code Review Participants
	Analyzing the Effectiveness of Peer Code Review to Prevent Security Vulnerabilities
	Social Network Analysis

	Areas of concern & Conclusion
	Acknowledgments
	References

